crosshole measurements - meaning and definition. What is crosshole measurements
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is crosshole measurements - definition

METHOD FOR TESTING A CONSTRUCTED MATERIAL
Crosshole Sonic Logging

History of latitude         
ASPECT OF HISTORY
History of latitude measurements
The Greeks studied the results of the measurements of latitude by the explorer Pytheas who voyaged to Britain and beyond, as far as the Arctic Circle (observing the midnight sun), in 325 BC. They used several methods to measure latitude, including the height of the Sun above the horizon at midday, measured using a gnōmōn (a word that originally meant an interpreter or judge); the length of the day at the summer solstice, and the elevation of the Sun at winter solstice.
Crosshole sonic logging         
Crosshole sonic logging (CSL) is a method to determine the structural integrity of drilled shafts and other concrete piles.
Radiation Measurements         
JOURNAL
Radiat. Meas.; Radiat Meas; Radiation Measurements (journal); Rad. Meas.; Rad Meas; Nuclear Tracks and Radiation Measurements; Nucl Tracks Radiat Meas; Nucl. Tracks Radiat. Meas.; Nuclear Tracks & Radiation Measurements; Nucl. Tracks Rad. Meas.; Nucl Tracks Rad Meas
Radiation Measurements is a monthly peer-reviewed scientific journal covering research on nuclear science and radiation physics. It was established in 1994 and is published by Elsevier.

Wikipedia

Crosshole sonic logging

Crosshole sonic logging (CSL) is a method to determine the structural integrity of drilled shafts and other concrete piles.

The CSL method is considered to be more accurate than sonic echo testing in the determination of structural soundness of concrete within the drilled shaft inside of the rebar cage. This method provides little indication of concrete soundness outside the cage.

Also known as Crosshole Acoustical Testing, CSL normally requires steel (preferred) or PVC access tubes installed in the drilled shaft and tied to the rebar cage. Before the rebar cage is placed in the hole, the CSL access tubes are attached to the interior of the rebar cage. The cage is then lowered into the hole and the concrete is placed. Steel CSL tubes are preferred over PVC tubes because studies have shown that PVC tubes tend to debond from the concrete due to the heat of hydration process of concrete, resulting in erratic CSL test results.

The tubes are filled with water as an intermediate medium. After curing for 3–7 days, a sound source and receiver are lowered, maintaining a consistent elevation between source and sensor. A signal generator generates a sonic pulse from the emitter which is recorded by the sensor. Relative energy, waveform and differential time are recorded, and logged. This procedure is repeated at regular intervals throughout the pile and then mapped. Areas of signal loss or wave speed reduction greater than 10 percent represent potential physical anomalies and can be targeted for further exploration. Measurements of relative energy or amplitude loss can be indicative of poor curing conditions or concrete heterogeneity including improper mixing of admixtures or retention of concrete laitance within the drilled shaft.  By comparing the graphs from the various combinations of access tubes, a qualitative idea of the structural soundness of the concrete throughout the pile can be gleaned.

A more advanced, higher-end analysis that creates a mock 3-dimensional graphical display of the concrete soundness throughout the pile is known as Crosshole Sonic Tomography.